乐清市盐盆街道纬五路222号乐清加速器B幢203

+86 15669738183

一种基于LSTM深度学习网络模型的疫情预测模型

本发明公开了一种基于LSTM深度学习网络模型的疫情预测模型,包括LSTM用于提取序列数据中的规律信息的长短期记忆网络层、用于拟定输出维度的全连接层、以及用于调整预测数据与标签数据之间的拟合程度的激活层;所述疫情预测模型包含两层连接的长短期记忆网络层,第一层长短期记忆网络层的输出作为第二层长短期记忆网络层的输入。本发明将2*LSTM层连接模型对序列化数据进行建模,充分考虑疫情序列数据之间变化的影响,使得模型拟合效果更好。疫情序列数据在经过1层LSTM训练后,记忆信息得以保留并传输入下一层LSTM,使得模型能充分学习序列间的变化信息,无需考虑除疫情变化记录外的其他参数,预测误差相对较低,对于后期疫情发展趋势存在参考价值。

More Posts

Send Us A Message