乐清市盐盆街道纬五路222号乐清加速器B幢203

+86 15669738183

基于深度学习的脉图质量检测方法

本发明公开了一种基于深度学习的脉图质量检测方法,属于图像处理领域。该脉图质量检测方法包括以下步骤:通过输入的脉图样本确定所述脉图样本的所有脉波的中位值来确定所述脉图样本的波峰并生成脉图图像;将脉图图像通过ImageDataGenerator方法进行预处理以获得增强型的脉图图像;将增强型的脉图图像输入卷积网络模型中识别并分类,以获得标准质量脉图;其中,卷积网络模型包括两个卷积层、两个池化层、两个激活层和至少一个全连接层。本发明提供的基于深度学习的脉图质量检测方法能够排除人工检测造成的主观干扰而客观化地评价脉图质量,进而识别出高质量脉图且能够保证脉图质量的一致性,还能够极大缩短脉图质量检测、判别的时间。

More Posts

Send Us A Message