本发明涉及一种面向传感信息处理的GPU集群深度学习边缘计算系统,运用前端智能传感设备的弱小的计算能力对传感信息预特征提取,使得原始数据信息量大大压缩,再将剩余处理任务交给GPU集群进行大规模传感数据特征聚类集合处理,通过任务拆分处理可以动态地适应前端智能传感设备的计算能力,减轻前端传感设备和硬件版本一致性要求的成本压力;降低边缘计算网络的通信压力,使得构建边缘计算的网络成本大大降低;网路数据特征传输隐藏了用户隐私;网络中传输的数据和存储的数据核心特征,通过聚类操作,发挥了GPU的SPMD优势,提高了边缘计算的并行计算效率,同时GPU集群的大规模并行计算能力以及低成本高可靠性的优势得以有效发挥。
