乐清市盐盆街道纬五路222号乐清加速器B幢203

+86 15669738183

全天高架交通拥堵情况分级的多特征学习网络模型方法

本发明提供一种全天高架交通拥堵情况分级的多特征学习网络模型方法。在本发明中,先将全天的交通车速数据根据数据的时间属性和空间属性重新组织成为速度时空矩阵,同时保留交通数据的时空特征;再根据速度时空矩阵以及道路拥堵速度分级定义,构造拥堵时空矩阵;然后根据拥堵时空矩阵,针对道路的各个路段构建拥堵时长占比向量;最后基于速度时空矩阵,拥堵时空矩阵和拥堵时长占比向量,用三个不同的神经网络分支对数据提取特征,并进行分类。与现有技术相比,本发明针对完整的全天数据,多特征学习网络模型能够较好提取不同类型的数据特征,针对全天交通数据,进行较为有效的数据分类,能够高效率自动化的全天交通拥堵情况分级的问题。
同济大学
臧笛 | 凌嘉炜 | 程久军 | 卫志华 | 张军旗

More Posts

Send Us A Message