本发明提供了一种面向动态雾计算网络的低时延任务调度方法,网络中的帮助节点不会实时广播自己的节点状态信息,如任务队列信息与可共享计算资源信息,或者说帮助节点并不会实时响应对这些信息的请求。在每次有任务卸载需求时,任务节点需要实时做出卸载决策,从当前的候选帮助帮助节点中选择一个卸载任务。由于任务节点对帮助节点状态未知,任务自身也有时延需求,任务节点则需要良好地从自己过往的任务卸载经验进行学习,为当前决策提供判断。本发明为非动态与动态变化的雾计算或者边缘计算网络提出了一种基于在线学习方法的单对多任务卸载算法,该方法可以大大减少网络中由于信息传播带来的能量开销,延长任务节点和帮助节点的使用时长。
上海科技大学
谭友钰 | 王昆仑 | 杨旸 | 周明拓 | 罗喜良
