本发明提供一种自调整采样优化的图像分类方法、设备及介质,包括:获取训练图像;最小化训练图像分类的交叉熵,自动确定深度神经网络的网络结构和参数;采用得到的所述深度神经网络对待分类图像进行处理,得到图像分类结果。本发明能基于给定的图像数据,自动调整设计基于深度神经网络的图像分类方法,减少人为设计的繁杂性和人力资源消耗,同时在计算资源限定的情况下,能实现较高的分类准确率,保证了图像分类方法的稳定性和实用性。