乐清市盐盆街道纬五路222号乐清加速器B幢203

+86 15669738183

基于全局特征共享的个性化联邦学习方法、装置及系统

本发明涉及一种基于全局特征共享的个性化联邦学习方法、装置及系统。基于全局特征共享的个性化联邦学习方法应用于客户端,包括:接收服务器发送的全局特征提取器模型和全局特征;根据全局特征提取器模型和本地分类器模型,初始化本地模型;将本地图像数据输入经过初始化的本地模型进行模型训练,确定本地模型的损失函数,损失函数包括本地图像数据的训练标签和真实标签之间的交叉熵损失、条件互信息正则项;根据本地模型的损失函数,基于反向传播对本地模型进行第一更新处理;当本地模型收敛时,确定目标本地模型。本公开通过引入全局特征和条件互信息正则项,共享全局特征,提高本地模型的泛化表现,并防止本地模型的过拟合。

More Posts

Send Us A Message