一种面向3C装配领域微力锁付缺陷检测的深度学习方法,通过建立缺陷数据集样本并利用无监督学习的卷积自编码思想的时序数据特征提取方法,从中提取特征维度一致的锁付缺陷检测评估的特征数据,生成锁付缺陷检测的特征数据集,将原始锁付特征数据集和增强锁付的特征数据集结合后输入轻量级卷积神经分类网络模型进行迭代训练,得到一种有效分类锁付缺陷推理的网络模型。本发明通过普适性的特征提取和特征降维方法以及时序信号深度学习网络,可以判断锁付质量并识别具体的锁付缺陷种类。能够显著提高精密微力锁付质量检测的准确性、稳定性和效率。
