本发明公开了一种基于深度学习的雷达异常状态诊断方法,包括以下步骤:利用气象雷达系统的各个分系统的历史状态数据和报警数据,以报警数据做标签,对故障进行分类,使用逐步回归法提取与每一类故障相关的特征参数;对每一类故障取特征参数中的相关系数最大的特征参数作为重构模型的重构参数目标,使用长短时记忆网络LSTM模型搭建重构模型,利用除相关系数最大的特征参数以外的特征参数对相关系数最大的特征参数进行拟合重构,得到重构值;对每一类故障的重构值和实测值的差值做基于概率的量化标准;对每一类故障的量化结果做时间区间统计,对不同模型的诊断结果进行整合,得到实时的对多个故障诊断结果并给出预警,滤除误报警,得到最终诊断结果。
