本发明提供了一种全断面隧道掘进机刀盘扭矩长时间预测方法及系统,包括:采集全断面隧道掘进机掘进过程中的刀盘扭矩信号并进行预处理得到刀盘扭矩序列;采用小波包分解矩阵将刀盘扭矩序列分解为高频和低频部分;将低频部分分解为若干个子序列和残差序列;高频部分分解为若干个子序列;构建刀盘扭矩多步长时间预测神经网络模型并进行训练;采用最小‑最大法分别对若干个子序列进行归一化,并传输至训练后的刀盘扭矩多步长时间预测神经网络模型得到若干个预测结果;将若干个预测结果相加,得到预测t时刻的刀盘扭矩数值;根据预测得到的多个刀盘扭矩数值,分别计算平均绝对百分比误差、均方根误差和平均绝对误差,评估刀盘扭矩的预测性能。
上海交通大学
覃程锦 | 刘成良 | 陶建峰 | 石岗 | 余宏淦 | 金衍瑞 | 孙浩
