本发明提供了一种原发性肝癌的早期预警模型的训练方法,发明基于临床检验数据,利用机器学习算法,建立原发性肝癌早期筛查模型,包括以下步骤:(a)对获得的临床检验数据进行数据预处理;(b)对预处理后的数据集进行数据集划分;(c)根据划分的数据集训练模型;(d)对分类模型的性能进行评估验证。筛查模型利用临床检验数据,结合实际临床要求,通过优化后模型的性能指标曲线选择阈值进行测试验证,进行原发性肝癌临床预警,为肝癌的早期成功诊断提供了条件,提高患者生存质量。
上海应用技术大学
曹国刚 | 李梦雪 | 高春芳 | 房萌 | 曹聪 | 王孜怡
