本发明涉及一种基于卷积神经网络的实时人群稳定状态识别方法及装置,所述方法包括以下步骤:获取输入图像,以所述输入图像作为多列卷积神经网络模型的输入,获得给定网格区域的人群数;对所述输入图像进行图像校正,获得所述给定网格区域的实际面积;基于所述人群数和实际面积,获得所述给定网格区域的人群密度值;基于所述人群密度值识别各给定网格区域的人群稳定状态;其中,所述多列卷积神经网络模型包括多个并行的、结构相同的卷积神经网络,各卷积神经网络的卷积核大小各不相同,各卷积神经网络的输出通过1×1的滤波器映射生成二维密度图矩阵,获得给定网格区域的人群数。与现有技术相比,本发明具有精度高等优点。
同济大学
赵荣泳 | 董大亨 | 王妍 | 刘琼 | 李翠玲 | 马云龙
