乐清市盐盆街道纬五路222号乐清加速器B幢203

+86 15669738183

一种极化欧拉特征融合深度学习的海上目标识别方法

本发明公开了一种极化欧拉特征融合深度学习的海上目标识别方法,该方法包含以下步骤:S1、海上人造目标的极化散射机制分析;S2、基于步骤S1的分析结果,构建对应的海上几何体极化距离矩阵数据集,并对极化距离矩阵数据集的样本进行多极化特征提取;S3、基于步骤S2,训练多极化特征融合的深度学习模型;S4、采用海上人造目标对步骤S3的多极化特征融合的深度学习模型识别测试验证。其优点是:该方法从海上目标的基础极化散射机制出发,基于深度学习融合利用HRRP和极化信息实现目标识别,消除了方位敏感性带来的不利影响,提高了雷达目标识别的精度,具有检测率高、虚警率低、扩展应用灵活、处理过程全自动的优点。
上海无线电设备研究所
顾丹丹 | 李永晨 | 高伟 | 魏飞鸣

More Posts

Send Us A Message