本发明公开了一种基于卷积神经网络的多物体抓取区域定位方法,包括图像平面抓取检测部分和抓取位姿定位部分,属于图像检测和定位领域。所述图像平面抓取检测部分对Cornell Grasping Dataset进行数据增强,并按照所述旋转直径圆的抓取表示方式构建图像的抓取标签,得到训练集和验证集;构建卷积神经网络模型并通过所述训练集训练,利用训练好的卷积神经网络模型为图像中每个物体预测可行的抓取圆。所述抓取位姿定位部分通过配准的点云得到抓取点的空间位置,然后计算抓取点的法线向量,结合物体抓取圆的参数,确定物体的抓取位姿。本发明可以在多物体场景下快速而准确的得到每个物体的抓取位姿,从而实现对未知物体的高准确度抓取。
上海大学
徐昱琳 | 王亮 | 杨傲雷 | 俞慧
