一种基于神经网络的抗癌药物协同作用的预测方法,该方法是利用神经网络模型实现的,所述神经网络模型包含卷积神经网络CNN1D降维和神经网络DNN回归构建的预测模型;利用卷积神经网络CNN1D降维和神经网络DNN回归构建的预测模型,能更加方便、快速降低数据的维度,减少模型训练的复杂度;该方法能够从多维度特征学习抗癌药物的潜在协同关系,其预测模型的预测精度高,可以帮助临床实验减少时间和金钱成本,快速定位有效的药物组合。 上海海洋大学 秦玉芳 | 陈希 | 陈明