本发明公开了一种基于混合特征向量表示的对话式音乐推荐方法,通过用户历史听歌数据表示为用户‑待推荐音乐实体的二维矩阵,并进行分解得到用户行为特征向量和音乐行为特征向量,通过利用翻译模型处理音乐知识图谱,为每个待推荐音乐实体得到特征向量表示,记为音乐知识特征向量,然后采用拼接的方式对不同来源的特征向量进行融合,扩大了向量空间,较好地保留了各个隐向量维度的语义信息。同时基于Bandit算法的实时推荐可以逐步推算出用户的偏好,且Bandit算法的执行逻辑符合交互式场景。这样实现了实时推荐,且对上下文信息、用户需求和反馈能良好处理。
华东师范大学
王晓玲 | 靳远远 | 周纯伊
