本发明公开了一种基于隐私保护的材料逆向设计方法及系统,所述材料逆向设计方法利用梯度下降法训练模型,采用共享梯度值的方式实现每个学习端的数据共享,避免直接传输材料数据导致材料数据泄漏的缺陷,并且在传输过程中采用的同态加密算法对传输的梯度值进行加密,进一步的保证了传输数据的隐私性,本发明在保证材料数据的隐私性的基础上,实现了利用各个单位的数据实现机器学习训练,克服了小数据导致的模型无法收敛与模型泛化性差的技术问题。 上海大学 钱权 | 方昊堃 | 孙文月