乐清市盐盆街道纬五路222号乐清加速器B幢203

+86 15669738183

基于多尺度结构化字典学习的3D点云压缩系统

本发明提供了一种基于多尺度结构化字典学习的3D点云压缩系统,其中:点云数据划分模块输出点云划分后的体素集合、不同尺度的体素块集合;几何信息编码模块输出编码的几何信息比特流;几何信息解码模块输出解码的几何信息;属性信号编码模块输出稀疏编码的系数矩阵与学习的多尺度结构化字典;属性信号编码模块输出学习到的多尺度结构化字典,属性信号压缩模块输出压缩后的属性信号比特流,属性信号解码模块输出解码的属性信号,3D点云重建模块完成重建。本发明适用于点云信号无损几何与有损属性压缩,利用点云信号天然的层次划分结构,沿着信号尺度由粗到精的方向,渐层地提升高频细节信息的重建质量,能够获得显著的性能增益。
上海交通大学
戴文睿 | 申扬眉 | 李成林 | 邹君妮 | 熊红凯

More Posts

Send Us A Message