一种基于多分子模态融合的通用蛋白质‑RNA结合预测方法,通过广义生物学基础模型对经预处理的蛋白质与RNA序列进行初始表征后,用于训练构造得到的基于改进交叉注意力机制的神经网络模型,在在线阶段采用训练后的模型根据任意输入的蛋白质序列与RNA分子序列输出对两分子序列结合可能性的预测值。本发明使用通用生物学基础模型为蛋白质与RNA两种分子进行初始表征,通过改进的交叉注意力机制对两种分子的表征进行有效信息的提取与融合,基于有效融合信息训练后的人工神经网络可以更加准确的预测蛋白质与RNA结合结果,并且具有更为强大的泛化能力,能够应对多类蛋白的结合预测场景与任务。
上海交通大学
宋承洋 | 沈红斌 | 潘小勇
More Posts
“规则的天空”:中国低空空域管理与安全体系演进趋势研究
2025年11月10日

新闻资讯 | 海外项目路演推介会暨乐清市科学技术局-国家技术转移东部中心产学研项目对接会成功举办
2023年11月24日