本发明公开了一种基于细粒度属性结构图的APT攻击检测方法,包括以下步骤:步骤S1:解析系统日志,提取实体对应属性,形成属性结构图;步骤S2:训练结构感知图自编码器模型;步骤S3:通过异常检测模型中识别异常节点;步骤S4:根据实体与属性映射表,将步骤S3中筛选出的异常节点映射成对应实体,并返回实体对应的异常日志条目。本发明突破固有的信息粒度的限制,使用属性结构特征表征网络行为中的实体,充分挖掘出攻击行为的结构特征,提高了对隐蔽的APT攻击形式的检测能力,缩减异常日志范围,降低了人工筛选处理恶意攻击日志的负担。
同济大学
王成 | 郑俊韩 | 朱航宇
More Posts
“规则的天空”:中国低空空域管理与安全体系演进趋势研究
2025年11月10日

新闻资讯 | 海外项目路演推介会暨乐清市科学技术局-国家技术转移东部中心产学研项目对接会成功举办
2023年11月24日