本发明提供了一种分布式深度学习的数据恢复方法、系统及可读存储介质,方法包括以下步骤:S1、收集神经网络模型进行训练的参数信息,并利用纠删码获得待恢复数据分布的全局信息;S2、利用人工智能来计算各类别训练数据恢复的优先级,对待恢复的数据所处的条带进行排序;S3、将计算得到的数据恢复优先级和待恢复数据分布的全局信息进行组合,构造并行的恢复方案。本发明通过人工智能为要恢复的数据建立加权优先级,并结合纠删码获得的数据块分布的全局信息来构建并行恢复方案,将纠删码获取数据全局信息的能力与人工智能恢复部分丢失数据的能力结合起来,在可接受的训练精度下大幅降低了资源消耗,加速了云存储系统中分布式深度学习的数据重建。
