本发明公开了一种基于深度学习的掩埋物体红外图像的目标检测方法,具体包括:1)红外数据采集及样本库的建立;2)对红外数据样本库中图像进行数据处理;3)根据掩埋物体红外数据特点,选取并调整合适的深度学习模型;4)将训练数据输入到掩埋红外图像目标检测模型,进行模型的训练以及调参,结合验证集结果保存模型;5)在测试集上完成对红外图像目标检测模型的测试,使用模型对测试集全部图像进行图像分割,随后根据设定好的掩埋物体红外图像分割结果判定出掩埋物体的检测结果,并使用设计过的测试指标筛选出检测效果最优的检测模型。本发明能够对包含较少语义信息的掩埋物体红外图像进行较为准确的目标区域检测,具有良好的使用价值。
