本发明公开了一种基于机构内递归与机构间递归相结合的联邦学习故障诊断方法,旨在解决隶属不同公司风力发电机关键部件监测数据面临的样本结构不一致的问题。这种由于传感器多速率采样、网络随机丢包带来的问题会使得联邦平均方法无法综合来自不同机构的数据。因此,提出了一种联邦学习策略,首先单个机构内划分为采样率不同的数据建立多个参与方模型,然后在联邦中心以资源分配策略将各机构的同一参与方进行联邦,在各机构内通过递归迁移的方式实现参与方内的模型优化。最后把更新之后的相同参与方模型上传到联邦中心进行下一轮的联邦,从而达到利用其他机构信息更新本机构深度学习故障诊断模型的目的,使数据利用更加充分,故障诊断更加准确。
More Posts
“规则的天空”:中国低空空域管理与安全体系演进趋势研究
2025年11月10日

新闻资讯 | 海外项目路演推介会暨乐清市科学技术局-国家技术转移东部中心产学研项目对接会成功举办
2023年11月24日