乐清市盐盆街道纬五路222号乐清加速器B幢203

+86 15669738183

基于深度学习的Vocs组分分子质谱图预测方法、装置和存储介质

本申请公开了基于深度学习的Vocs组分分子质谱图预测方法、装置和存储介质,本申请的方法包括根据NIST数据库中的分子和质谱图数据训练DeepVocsMass模型;向所述DeepVocsMass模型输入质谱图,得到相似度函数;根据所述相似度函数计算质谱图的相似度;输出相似度最高的质谱图。本申请通过深度学习技术对Vocs分子进行质谱图预测,通过训练深度神经网络模型,预测Vocs分子的质谱图,并通过与标准库进行对比,确定Vocs质谱图,实现对Vocs质谱监测结果的成份分析,对于大气环境Vocs治理和监测具有重要意义。

More Posts

Send Us A Message