乐清市盐盆街道纬五路222号乐清加速器B幢203

+86 15669738183

一种基于深度学习的加密型恶意流量检测系统和方法

本发明公开了一种基于隐马尔科夫链的加密型恶意流量检测系统,涉及计算机网络安全领域的加密型恶意流量检测领域,包括数据收集模块、预处理模块、指纹生成模块、指纹库、评估模块,并依次连接;数据收集模块使用网络嗅探工具收集流量样本,通过应用监控程序关联流量样本与进程;预处理模块把研究对象设定为每个进程及其对应的通信信息,把研究对象的网络流收集到一起;指纹生成模块对流量样本进行序列化,传入隐马尔科夫模型,生成指纹;指纹经处理后存储在指纹库中;评估模块分析指纹特征,找出异常指纹。本发明针对加密流量的移动互联网恶意软件检测技术,准确率高,误报率低,实现了高效准确警报拦截加密恶意流量,保护移动互联网用户安全。
上海交通大学
邹福泰 | 俞汤达 | 李林森 | 章思宇 | 姜开达 | 吴越

More Posts

Send Us A Message