一种齿轮箱错误类别标签修正系统及方法,该系统包括:时域特征提取融合模块、样本权重赋予模块、错误标签筛选模块和错误标签修正模块,时域特征提取融合模块提取并拼接齿轮箱振动信号不同模态分量的时域统计特征,样本权重赋予模块通过堆栈自编码获得时域统计特征的降维特征后,使用孤立森林改变不同样本在堆栈自编码训练中的权重,并估计出错误标签的比例,错误标签筛选模块对降维特征通过聚类方法挑选出错误标签率低的样本,错误标签修正模块根据错误标签率低的样本以及权重进行分类器训练,获取所有样本的信息熵,根据信息熵阈值实现样本标签的修正。降低错误的标签对分类器训练的不良影响,提高错误标签修正的正确率。本发明能够将错误标签样本的比例降低到2.5%以内。
上海交通大学
黄亦翔 | 张旭
