本发明属于EOL下线测试程序自动生成领域,具体涉及一种基于强化学习的车辆域控制器EOL测试程序生成方法。包括以下步骤:S1:从原理图中获取的元器件原始数据,将原始电路及元器件连接属性进行数据处理,组合成最小电路组合数据;S2:在步骤S1得到的二维向量数据集上构建一个最优EOL下线测试用例选择模型;S3:基于S2模型,利用Q‑Learning算法生成当前优先级最高的EOL测试程序;S4:根据评判标准来选择出最优的测试用例。本发明方法解决了测试结果施加奖励方法的缺陷是检测失效率低,难以收敛;测试反馈时间长的问题。
同济大学
王成 | 张军旗 | 党寅 | 刘钦源 | 程大伟 | 王利莹 | 朱航宇 | 王朝栋
More Posts
“规则的天空”:中国低空空域管理与安全体系演进趋势研究
2025年11月10日

新闻资讯 | 海外项目路演推介会暨乐清市科学技术局-国家技术转移东部中心产学研项目对接会成功举办
2023年11月24日