本发明提供了一种卷积神经网络训练8位张量表示方法及系统,包括:步骤S1:张量分成低比特张量部分和共享阶码数组;步骤S2:使用SP8表示方法表示低比特张量部分的数值;步骤S3:使用按通道分配共享阶码的共享阶码管理方法共享阶码部分;步骤S4:将张量表示方法应用于卷积神经网络训练时卷积部分的前向传播与反向传播。本发明有效降低卷积神经网络训练时的存储开销与计算开销;本发明具有比现有8位张量表示方法更高的神经网络训练精度。